Thursday, July 19, 2012

Site-to-Site and Extranet VPN Business Scenarios

Tunneling

Tunneling provides a way to encapsulate packets inside of a transport protocol. Tunneling is implemented as a virtual interface to provide a simple interface for configuration. The tunnel interface is not tied to specific "passenger" or "transport" protocols, but rather, it is an architecture that is designed to provide the services necessary to implement any standard point-to-point encapsulation scheme. Because tunnels are point-to-point links, you must configure a separate tunnel for each link.

Tunneling has the following three primary components:

•Passenger protocol, which is the protocol you are encapsulating (AppleTalk, Banyan VINES, Connectionless Network Service [CLNS], DECnet, IP, or Internetwork Packet Exchange [IPX]).

•Carrier protocol, such as the generic routing encapsulation (GRE) protocol or IPSec protocol.

•Transport protocol, such as IP, which is the protocol used to carry the encapsulated protocol.

GRE

GRE is capable of handling the transportation of multiprotocol and IP multicast traffic between two sites, which only have IP unicast connectivity. The importance of using tunnels in a VPN environment is based on the fact that IPSec encryption only works on IP unicast frames. Tunneling allows for the encryption and the transportation of multiprotocol traffic across the VPN since the tunneled packets appear to the IP network as an IP unicast frame between the tunnel endpoints. If all connectivity must go through the home Cisco 7200 series router , tunnels also enable the use of private network addressing across a service provider's backbone without the need for running the Network Address Translation (NAT) feature.

Network redundancy (resiliency) is an important consideration in the decision to use GRE tunnels, IPSec tunnels, or tunnels which utilize IPSec over GRE. GRE can be used in conjunction with IPSec to pass routing updates between sites on an IPSec VPN. GRE encapsulates the clear text packet, then IPSec (in transport or tunnel mode) encrypts the packet.This packet flow of IPSec over GRE enables routing updates, which are generally multicast, to be passed over an encrypted link. IPSec alone can not achieve this, because it does not support multicast.

Using redundant GRE tunnels protected by IPSec from a remote router to redundant headquarter routers, routing protocols can be employed to delineate the "primary" and "secondary" headquarter routers. Upon loss of connectivity to the primary router, routing protocols will discover the failure and route to the secondary Cisco 7200 series router, thereby providing network redundancy.

It is important to note that more than one router must be employed at HQ to provide resiliency. For VPN resilience, the remote site should be configured with two GRE tunnels, one to the primary HQ VPN router, and the other to the backup HQ VPN router.

IPSec

IPSec can be configured in tunnel mode or transport mode. IPSec tunnel mode can be used as an alternative to a GRE tunnel, or in conjunction with a GRE tunnel. In IPSec tunnel mode, the entire original IP datagram is encrypted, and it becomes the payload in a new IP packet. This mode allows a network device, such as a router, to act as an IPSec proxy. That is, the router performs encryption on behalf of the hosts. The source router encrypts packets and forwards them along the IPSec tunnel. The destination router decrypts the original IP datagram and forwards it on to the destination system. Tunnel mode protects against traffic analysis; with tunnel mode, an attacker can only determine the tunnel endpoints and not the true source and destination of the packets passing through the tunnel, even if they are the same as the tunnel endpoints.

Site-to-Site and Extranet VPN Business Scenarios
Point-to-Point GRE over IPsec Design Overview

No comments:

Post a Comment